Ideals and topology 0000	heta-open sets and ideals 00	Continuity 0000000	References O

On weaker types of continuity with a little help of ideals¹

Aleksandar Pavlović Anika Njamcul

Department of Mathematics and Informatics, Faculty of Sciences, Novi Sad, Serbia

Winter School 2023

Continuity

 $^{^{1}}$ This talk is supported by the Science Fund of the Republic of Serbia, Grant No. 7750027: Set-theoretic,

model-theoretic and Ramsey- theoretic phenomena in mathematical structures: similarity and diversity - SMART = 👘 👘 🕤

Ideals and topology	θ -open sets and ideals 00	Continuity	References
●000		0000000	O

 $\langle X, \tau \rangle$ - topological space

 $x \in \operatorname{Cl}(A) \Leftrightarrow$ for each $U \in \tau(x) \ A \cap U \notin \{\emptyset\}$

Ideals and topology ●000	heta-open sets and ideals 00	Continuity 0000000	References O

 $\langle X, \tau \rangle$ - topological space

 $x \in \operatorname{Cl}(A) \Leftrightarrow \text{ for each } U \in \tau(x) \ A \cap U \notin \{\emptyset\}$

 ${\mathcal I}$ - an ideal on X

 $x \in A^*_{(\tau,\mathcal{I})} \Leftrightarrow \text{ for each } U \in \tau(x) \ A \cap U \notin \mathcal{I}$ $\langle X, \tau, \mathcal{I} \rangle \text{ - ideal topological space [Kuratowski 1933]}$

 $A^*_{(au,\mathcal{I})}$ (briefly A^*) - local function

э.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Ideals and topology	heta-open sets and ideals 00	Continuity	References
0●00		0000000	O

For $\mathcal{I} = \{\emptyset\}$ we have that $A^*(\mathcal{I}, \tau) = \operatorname{Cl}(A)$. For $\mathcal{I} = P(X)$ we have that $A^*(\mathcal{I}, \tau) = \emptyset$. For $\mathcal{I} = Fin$ we have that $A^*(\mathcal{I}, \tau)$ is the set of ω -accumulation points of A. For $\mathcal{I} = \mathcal{I}_{count}$ we have that $A^*(\mathcal{I}, \tau)$ is the set of condensation points of A.

э

Ideals and topology	heta-open sets and ideals oo	Continuity	References
⊙●⊙⊙		0000000	O

For $\mathcal{I} = \{\emptyset\}$ we have that $A^*(\mathcal{I}, \tau) = \operatorname{Cl}(A)$. For $\mathcal{I} = P(X)$ we have that $A^*(\mathcal{I}, \tau) = \emptyset$. For $\mathcal{I} = Fin$ we have that $A^*(\mathcal{I}, \tau)$ is the set of ω -accumulation points of A. For $\mathcal{I} = \mathcal{I}_{count}$ we have that $A^*(\mathcal{I}, \tau)$ is the set of condensation points of A.

(1)
$$A \subseteq B \Rightarrow A^* \subseteq B^*$$
;
(2) $A^* = \operatorname{Cl}(A^*) \subseteq \operatorname{Cl}(A)$;
(3) $(A^*)^* \subseteq A^*$;
(4) $(A \cup B)^* = A^* \cup B^*$
(5) If $I \in \mathcal{I}$, then $(A \cup I)^* = A^* = (A \setminus I)^*$.

Ideals and topology	heta-open sets and ideals	Continuity	References
cc●o	00	0000000	O

Topology τ^*

Definition

 $\mathrm{Cl}^*(A)=A\cup A^*$ is a Kuratowski closure operator, and therefore it generates a topology on X

$$\tau^*(\mathcal{I}) = \{A : \mathrm{Cl}^*(X \setminus A) = X \setminus A\}.$$

Set A is closed in τ^* iff $A^* \subseteq A$.

 $\psi(A) = X \setminus (X \setminus A)^*$ $O \in \tau^* \Leftrightarrow O \subseteq \psi(O)$

$$\tau \subseteq \tau^* = \tau^{**}$$

$$\beta(\mathcal{I},\tau) = \{V \setminus I : V \in \tau, I \in \mathcal{I}\} \text{ is a basis for } \tau^*$$

Ideals and topology 000●	heta-open sets and ideals 00	Continuity 0000000	References O

Topology τ^*

For $\mathcal{I} = \{\emptyset\}$ we have that $\tau^*(\mathcal{I}) = \tau$. For $\mathcal{I} = P(X)$ we have that $\tau^*(\mathcal{I}) = P(X)$. If $\mathcal{I} \subseteq \mathcal{J}$ then $\tau^*(\mathcal{I}) \subseteq \tau^*(\mathcal{J})$. If $Fin \subseteq \mathcal{I}$ then $\langle X, \tau^* \rangle$ is T_1 space. If $\mathcal{I} = Fin$, then $\tau^*_{ad}(\mathcal{I})$ is the cofinite topology on X. If $\mathcal{I} = \mathcal{I}_{m0}$ - ideal of the sets of measure zero, then τ^* -Borel sets are precisely the Lebesgue measurable sets. (Scheinberg 1971) For $\mathcal{I} = \mathcal{I}_{nwd}$ then $A^* = \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(A)))$ and $\tau^*(\mathcal{I}_{nwd}) = \tau^{\alpha}$. (α -open sets, $A \subseteq \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A)))$. (Njástad 1965)

Ideals and topology	θ -open sets and ideals $\bullet \circ$	Continuity	References
0000		0000000	O

θ -open sets

$$x \in \operatorname{Cl}_{\theta}(A) \Leftrightarrow \forall U \in \tau(x) \ \operatorname{Cl}(U) \cap A \notin \{\emptyset\}$$

A is θ -closed iff $\operatorname{Cl}_{\theta}(A) = A$ A is θ -open iff $X \setminus A$ is θ -closed Introduced by Veličko in 1968 in order to study H-closed spaces and H-sets. Set is A H-set (in Hausdorff space X) iff for each open cover $\{U_{\alpha} : \alpha < \kappa\}$ of A exists finite subfamily $\{U_{\alpha_k} : k \leq n\}$ such that $A \subseteq \bigcup_{k \leq n} \operatorname{Cl}(U_{\alpha_k})$.

э.

Ideals and topology 0000	θ -open sets and ideals $\bullet \circ$	Continuity	References O

θ -open sets

$$x \in \operatorname{Cl}_{\theta}(A) \Leftrightarrow \forall U \in \tau(x) \ \operatorname{Cl}(U) \cap A \notin \{\emptyset\}$$

A is θ -closed iff $\operatorname{Cl}_{\theta}(A) = A$ A is θ -open iff $X \setminus A$ is θ -closed Introduced by Veličko in 1968 in order to study H-closed spaces and H-sets. Set is A H-set (in Hausdorff space X) iff for each open cover $\{U_{\alpha} : \alpha < \kappa\}$ of A exists finite subfamily $\{U_{\alpha_k} : k \leq n\}$ such that $A \subseteq \bigcup_{k \leq n} \operatorname{Cl}(U_{\alpha_k})$. θ open sets forms topology τ_{θ} and $\tau_{\theta} \subseteq \tau$ Space is T_3 iff $\tau_{\theta} = \tau$

$$A \subseteq \operatorname{Cl}_{\theta}(A) \subseteq \operatorname{Cl}_{\tau_{\theta}}(A)$$

Ideals and topology	θ -open sets and ideals $\circ \bullet$	Continuity	References
0000		0000000	O

Local closure function

 $x \in \Gamma_{(\tau,\mathcal{I})}(A) \Leftrightarrow \forall U \in \tau(x) \ \operatorname{Cl}(U) \cap A \notin \mathcal{I}$

If $\mathcal{I} = \{\emptyset\}$ then $\Gamma(A) = \operatorname{Cl}_{\theta}(A)$ Γ -local closure function Introduced by Al-Omari and Noiri [1] in 2013.

 $\psi_{\Gamma}(A) = X \setminus \Gamma(X \setminus A)$

Topology σ is defined by ψ_{Γ} :

 $A \in \sigma \Leftrightarrow A \subseteq \psi_{\Gamma}(A).$

F is a closed set σ iff $\Gamma(F) \subseteq F$. $\tau_{\theta} \subseteq \sigma$ If $\mathcal{I} = \{\emptyset\}$, then $\tau_{\theta} = \sigma$.

Ideals and topology	heta-open sets and ideals 00	Continuity	References
0000		●000000	O

Definition

A function $f: X \to Y$ at the point $x \in X$ is

- ▶ continuous iff $\forall V \in \tau(f(x)) \exists U \in \tau(x) \ f[U] \subseteq V$
- weakly continuous iff $\forall V \in \tau(f(x)) \ \exists U \in \tau(x) \ f[U] \subseteq Cl(V)$
- ▶ θ -continuous iff $\forall V \in \tau(f(x)) \exists U \in \tau(x) \ f[\operatorname{Cl}(U)] \subseteq \operatorname{Cl}(V)$
- ► τ_{θ} -continuous iff $\forall V \in \tau_{\theta}(f(x)) \exists U \in \tau_{\theta}(x) \ f[U] \subseteq V$
- ▶ faintly-continuous iff $\forall V \in \tau_{\theta}(f(x)) \exists U \in \tau(x) \ f[U] \subseteq V$

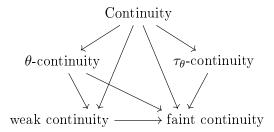
э.

Ideals and topology	heta-open sets and ideals 00	Continuity	References
0000		●000000	O

Definition

A function $f: X \to Y$ at the point $x \in X$ is

- ▶ continuous iff $\forall V \in \tau(f(x)) \exists U \in \tau(x) \ f[U] \subseteq V$
- weakly continuous iff $\forall V \in \tau(f(x)) \exists U \in \tau(x) \ f[U] \subseteq Cl(V)$
- ▶ θ -continuous iff $\forall V \in \tau(f(x)) \exists U \in \tau(x) \ f[\operatorname{Cl}(U)] \subseteq \operatorname{Cl}(V)$
- ► τ_{θ} -continuous iff $\forall V \in \tau_{\theta}(f(x)) \exists U \in \tau_{\theta}(x) \ f[U] \subseteq V$
- ► faintly-continuous iff $\forall V \in \tau_{\theta}(f(x)) \exists U \in \tau(x) \ f[U] \subseteq V$



Ideals and topology 0000	heta-open sets and ideals oo	$\underset{0 \neq 00000}{\text{Continuity}}$	References O

Problem

Question 1

If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is continuous, what are sufficient conditions for $f : \langle X, \tau^* \rangle \to \langle Y, \sigma^* \rangle$ to remain continuous?

Ideals and topology 0000	heta-open sets and ideals 00	$\underset{0 \neq 00000}{\text{Continuity}}$	References O

Problem

Question 1

If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is continuous, what are sufficient conditions for $f : \langle X, \tau^* \rangle \to \langle Y, \sigma^* \rangle$ to remain continuous?

Question 2

If $f: \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is XXXXXXX-continuous, what can we conclude about function if we change topologies by ideals?

Ideals and topology 0000	θ -open sets and ideals 00	$\underset{\texttt{OO} \bullet \texttt{OOO}}{\texttt{Continuity}}$	References O

Continuity

Theorem

Let $\langle X, \tau_X, \mathcal{I}_X \rangle$ and $\langle Y, \tau_Y, \mathcal{I}_Y \rangle$ be ideal topological spaces. If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is a continuous function and for all $I \in \mathcal{I}_Y$ we have $f^{-1}[I] \in \mathcal{I}_X$. Then there hold the following equivalent conditions:

 $\begin{array}{l} \mathbf{a}) \ \forall A \subseteq X \ f[A^*] \subseteq (f[A])^*; \\ \mathbf{b}) \ \forall B \subseteq Y \ (f^{-1}[B])^* \subseteq f^{-1}[B^*]. \end{array}$

which implies the following three equivalent conditions:

c)
$$\forall A \subseteq X \ f[\operatorname{Cl}^*(A)] \subseteq \operatorname{Cl}^*(f[A]);$$

d) $\forall B \subseteq Y \ \operatorname{Cl}^*((f^{-1}[B])) \subseteq f^{-1}[\operatorname{Cl}^*(B)];$

e) $f:\langle X,\tau_X^*\rangle \to \langle Y,\tau_Y^*\rangle$ is a continuous function.

イロト イヨト イヨト

Ideals and topology	heta-open sets and ideals oo	Continuity	References
0000		0000000	O

θ -continuity

$\forall V \in \tau(f(x)) \; \exists U \in \tau(x) \; f[\operatorname{Cl}(U)] \subseteq \operatorname{Cl}(V)$

Theorem

Let $\langle X, \tau_X, \mathcal{I}_X \rangle$ and $\langle Y, \tau_Y, \mathcal{I}_Y \rangle$ be ideal topological spaces. If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is a θ -continuous function and for all $I \in \mathcal{I}_Y$ we have $f^{-1}[I] \in \mathcal{I}_X$, then there hold the following equivalent conditions:

a) $\forall A \subseteq X \ f[\Gamma(A)] \subseteq \Gamma(f[A]);$ b) $\forall B \subseteq Y \ \Gamma(f^{-1}[B]) \subseteq f^{-1}[\Gamma(B)].$

which implies the following two equivalent conditions:

c) $\forall A \subseteq X \ f[\operatorname{Cl}_{\sigma}(A)] \subseteq \operatorname{Cl}_{\sigma}(f[A]);$ d) $f: \langle X, \sigma_X \rangle \to \langle Y, \sigma_Y \rangle$ is a continuous function.

э.

Ideals and topology	heta-open sets and ideals 00	Continuity	References
0000		000€000	O

θ -continuity

$\forall V \in \tau(f(x)) \; \exists U \in \tau(x) \; f[\operatorname{Cl}(U)] \subseteq \operatorname{Cl}(V)$

Theorem

Let $\langle X, \tau_X, \mathcal{I}_X \rangle$ and $\langle Y, \tau_Y, \mathcal{I}_Y \rangle$ be ideal topological spaces. If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is a θ -continuous function and for all $I \in \mathcal{I}_Y$ we have $f^{-1}[I] \in \mathcal{I}_X$, then there hold the following equivalent conditions:

a) $\forall A \subseteq X \ f[\Gamma(A)] \subseteq \Gamma(f[A]);$ b) $\forall B \subseteq Y \ \Gamma(f^{-1}[B]) \subseteq f^{-1}[\Gamma(B)].$

which implies the following two equivalent conditions:

c) $\forall A \subseteq X \ f[\operatorname{Cl}_{\sigma}(A)] \subseteq \operatorname{Cl}_{\sigma}(f[A]);$ d) $f: \langle X, \sigma_X \rangle \to \langle Y, \sigma_Y \rangle$ is a continuous function.

Corollary

If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is a θ -continuous function then $f : \langle X, (\tau_\theta)_X \rangle \to \langle Y, (\tau_\theta)_Y \rangle$ is continuous.

э.

・ロト ・回ト ・ヨト

Ideals and topology	heta-open sets and ideals 00	Continuity	References
0000		0000000	O

Weak continuity

$$\forall V \in \tau(f(x)) \; \exists U \in \tau(x) \; f[U] \subseteq \operatorname{Cl}(V)$$

Theorem

Let $\langle X, \tau_X, \mathcal{I}_X \rangle$ and $\langle Y, \tau_Y, \mathcal{I}_Y \rangle$ be ideal topological spaces. If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is a weakly continuous function and for all $I \in \mathcal{I}_Y$ we have $f^{-1}[I] \in \mathcal{I}_X$, then there hold the following equivalent conditions:

a) $\forall A \subseteq X \ f[A^*] \subseteq \Gamma(f[A]);$ b) $\forall B \subseteq Y \ (f^{-1}[B])^* \subseteq f^{-1}[\Gamma(B)].$

which implies the following condition:

c) $f: \langle X, \tau_X^* \rangle \to \langle Y, \sigma_Y \rangle$ is a continuous function.

э.

Ideals and topology	heta-open sets and ideals oo	Continuity	References
0000		0000000	O

Weak continuity

$$\forall V \in \tau(f(x)) \; \exists U \in \tau(x) \;\; f[U] \subseteq \operatorname{Cl}(V)$$

Theorem

Let $\langle X, \tau_X, \mathcal{I}_X \rangle$ and $\langle Y, \tau_Y, \mathcal{I}_Y \rangle$ be ideal topological spaces. If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is a weakly continuous function and for all $I \in \mathcal{I}_Y$ we have $f^{-1}[I] \in \mathcal{I}_X$, then there hold the following equivalent conditions:

a) $\forall A \subseteq X \ f[A^*] \subseteq \Gamma(f[A]);$ b) $\forall B \subseteq Y \ (f^{-1}[B])^* \subseteq f^{-1}[\Gamma(B)].$

which implies the following condition:

c) $f: \langle X, \tau_X^* \rangle \to \langle Y, \sigma_Y \rangle$ is a continuous function.

Corollary (Long and Herrington 1982)

If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is a weakly continuous function then $f : \langle X, \tau_X \rangle \to \langle Y, (\tau_{\theta})_Y \rangle$ is continuous, which is equivalent to faint continuity of $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$.

э.

- ロト - (四ト - (日下 - (日下

Ideals and topology 0000	heta-open sets and ideals 00	Continuity 00000€0	References O

Theorem

If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is weakly continuous and not τ_{θ} -continuous, then both X and Y have infinite topologies.

Ideals and topology 0000	heta-open sets and ideals 00	$\begin{array}{c} \text{Continuity} \\ \text{0000000} \end{array}$	References O

Theorem

If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is weakly continuous and not τ_{θ} -continuous, then both X and Y have infinite topologies. So, if $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is weakly continuous and if X or Y is has finite topology, then f is τ_{θ} -continuous.

Ideals and topology 0000	heta-open sets and ideals 00	Continuity 0000000	References O

Theorem

If $f: \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is weakly continuous and not τ_{θ} -continuous, then both X and Y have infinite topologies. So, if $f: \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is weakly continuous and if X or Y is has finite topology, then f is τ_{θ} -continuous.

Example (Weakly-continuous, but not τ_{θ} -continuous) Let $X = \{x_0, x_1\} \cup \omega$ and $Y = \{y_0, y_1\} \cup \omega \times \{0, 1\}$.

$$\begin{aligned} \mathcal{B}_X(x_0) &= \{ \{x_0\} \cup \omega \setminus K : |K| < \aleph_0 \} \\ \mathcal{B}_X(x_1) &= \{ \{x_1\} \cup \omega \setminus K : |K| < \aleph_0 \} \\ \mathcal{B}_X(n) &= \{n\} \end{aligned}$$

э

Ideals and topology	heta-open sets and ideals oo	Continuity	References
0000		00000€0	O

Theorem

If $f: \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is weakly continuous and not τ_{θ} -continuous, then both X and Y have infinite topologies. So, if $f: \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is weakly continuous and if X or Y is has finite topology, then f is τ_{θ} -continuous.

Example (Weakly-continuous, but not τ_{θ} -continuous) Let $X = \{x_0, x_1\} \cup \omega$ and $Y = \{y_0, y_1\} \cup \omega \times \{0, 1\}$.

э

Ideals and topology	heta-open sets and ideals 00	Continuity	References
0000		00000€0	O

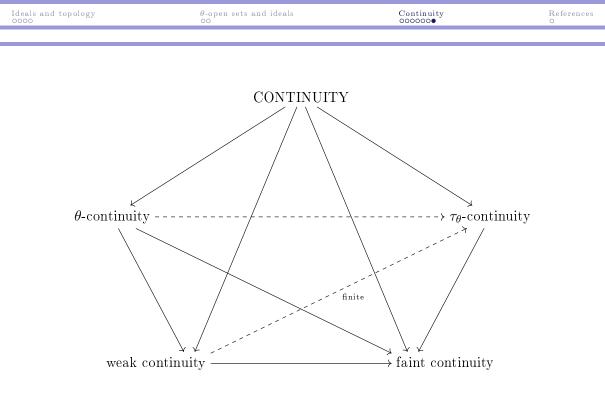
Theorem

If $f: \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is weakly continuous and not τ_{θ} -continuous, then both X and Y have infinite topologies. So, if $f: \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is weakly continuous and if X or Y is has finite topology, then f is τ_{θ} -continuous.

Example (Weakly-continuous, but not τ_{θ} -continuous) Let $X = \{x_0, x_1\} \cup \omega$ and $Y = \{y_0, y_1\} \cup \omega \times \{0, 1\}$.

$$\begin{aligned} \mathcal{B}_X(x_0) &= \{\{x_0\} \cup \omega \setminus K : |K| < \aleph_0\} \\ \mathcal{B}_X(x_1) &= \{\{x_1\} \cup \omega \setminus K : |K| < \aleph_0\} \\ \mathcal{B}_X(n) &= \{n\} \\ \mathcal{B}_Y(y_0) &= \{\{y_0\} \cup \{\langle k, 0 \rangle : k \ge n\} : n \in \omega\}, \\ \mathcal{B}_Y(y_1) &= \{\{y_1\} \cup ((\omega \times \{1\}) \setminus K) \cup \{\langle n, 0 \rangle\} : |K| < \aleph_0, n \in \omega\}, \\ \mathcal{B}_Y(\langle n, 0 \rangle) &= \{\langle n, 0 \rangle\}, \\ \mathcal{B}_Y(\langle n, 1 \rangle) &= \{\{y_1\} \cup ((\omega \times \{1\}) \setminus K) \cup \{\langle n, 0 \rangle, \langle n, 1 \rangle\} : |K| < \aleph_0, n \in \omega\}. \end{aligned}$$

$$f(x_0) = y_0, f(x_1) = y_1, f(n) = \langle n, 1 \rangle, \text{ for } n \in \omega.$$



Continuity 0000000

AL-OMARI, A., AND NOIRI, T.

Local closure functions in ideal topological spaces. Novi Sad J. Math. 43, 2 (2013), 139-149.

ANDREW, D. R., AND WHITTLESY, E. K.

Classroom Notes: Closure Continuity. Amer. Math. Monthly 73, 7 (1966), 758-759.

FOMIN, S.

Extensions of topological spaces. Ann. of Math. (2) 44 (1943), 471-480.

JANKOVIĆ, D., AND HAMLETT, T. R.

New topologies from old via ideals. Amer. Math. Monthly 97, 4 (1990), 295-310.

LEVINE, N.

A decomposition of continuity in topological spaces. Amer. Math. Monthly 68 (1961), 44-46.

Long, P. E., and Herrington, L. L.

The T_{θ} -topology and faintly continuous functions. Kyungpook Math. J. 22, 1 (1982), 7-14.

NJAMCUL, A., AND PAVLOVIĆ, A.

On closure compatibility of ideal topological spaces and idempotency of the local closure function. Periodica Mathematica Hungarica 84, 2 (2022), 221-234.

NJAMCUL, A., AND PAVLOVIĆ, A.

On preserving continuity in ideal topological spaces. Georgian Mathematical Journal 29, 4 (2022), 567-574.

NJAMCUL, A., AND PAVLOVIĆ, A.

Various types of continuity and their interpretations in ideal topological spaces. arXiv e-prints. doi:10.48550/arXiv.2212.01490 (2022)