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Local function

(X, ) - topological space

x € Cl(A) & foreach U € 7(x) ANU ¢ {0}
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(X, ) - topological space
z € Cl(A) < foreach U er(z) ANU & {0}
7 - an ideal on X

v €A foreachUer(z) ANUZT
(X, 1,Z) - ideal topological space [Kuratowski 1933]
AE‘T’I) (briefly A*) - local function
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Local function

For Z = {0} we have that A*(Z,7) = CI(A).
For Z = P(X) we have that A*(Z,7) = (.

For Z = Fin we have that A*(Z,7) is the set of w-accumulation points of A.
For Z = Z.ount we have that A*(Z, 7) is the set of condensation points of A.
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Local function

For Z = {0} we have that A*(Z,7) = CI(A).

For Z = P(X) we have that A*(Z,7) = (.

For Z = Fin we have that A*(Z,7) is the set of w-accumulation points of A.
For Z = Z.ount we have that A*(Z, 7) is the set of condensation points of A.

(1) A C B = A* C B*;

(2) A* = Cl(A*) C Cl(A),

(3) (A )r €AY

(4) (AUB)* = A*U B*

(5) If I € Z, then (AUI)* = A* = (A\ I)*.

=] 5
|

DA

Continuity

Novi Sad




Ideals and topology 6-open sets and ideals Continuity References
0000 00 0000000 o

:

:

Topol ¥
opology T
Definition

topology on X

Set A is closed in 7* iff A* C A.

ClI"(A) = AU A* is a Kuratowski closure operator, and therefore it generates a
THZ)={A:CI"(X \A) = X\ A}

P(A) =X\ (X\A)
Oct < 0CyP(0)
TgT*:T**

Continuity
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Topology 7*

For Z = {0} we have that 7*(Z) =
For Z = P(X) we have that 7"(Z)
If ZC J then 7*(Z) C 7*(J).

If Fin C T then (X, 7*) is T} space.

If 7T = Fin , then 77,(7) is the cofinite topology on X.

If T = 7,0 - ideal of the sets of measure zero, then 7*-Borel sets are precisely the
Lebesgue measurable sets. (Scheinberg 1971)

For 7 = Z,,,yq then A* = Cl(Int(Cl(A))) and 7*(Zpwa) = 7%. (a-open sets,

A CInt(Cl(Int(A))). (Njastad 1965)

T.

P(X).
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f-open sets

ze€Cly(A) VU er(z) CU)N A & {0}
A is f-closed iff Clp(A) = A

A is B-open iff X \ A is #-closed
Introduced by Velicko in 1968 in order to study H-closed spaces and H-sets.

Set is A H-set (in Hausdorff space X) iff for each open cover {U, : o < K} of A
exists finite subfamily {Us,, : k < n} such that A C |, Cl(Us,)
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f-open sets
x € Cly(A) & VU € r(x) CLLU)N A & {0}

A is f-closed iff Clp(A) = A

A is B-open iff X \ A is #-closed

Introduced by Velicko in 1968 in order to study H-closed spaces and H-sets.

Set is A H-set (in Hausdorff space X) iff for each open cover {U, : o < K} of A

exists finite subfamily {U,, : k <n} such that A C {J,<, Cl(Uy,).

0 open sets forms topology 79 and 79 C 7

Spaceis T3 iff 79 =7

A CCly(A) C Cl,,(A)
o = = = E DA
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If Z = {0} then T'(A) = Cly(A)

rel,n(A)eVWer(z) CLU)NA¢T
I" -local closure function

Introduced by Al-Omari and Noiri 1] in 2013.

¢r(4) = X \T(X\ 4)
Topology o is defined by ¥r:

F'is a closed set o iff I'(F) C F
T9 C O

AGU@AQ’I#F( )
If Z = {0}, then 7y = 0.

Continuity

:
Novi Sad



Ideals and topology

g—oopen sets and ideals ggggléglcl)ty ];{eferences
Definition
A function f: X — Y at the point z € X is
» continuous iff VV € 7(f(z)) U € 7(z) fIUJCV
» weakly continuous iff VV € 7(f(x)) 3U € 7(z) f[U] C CL(V)
» f-continuous ift VV € 7(f(x)) U € 7(z) f[CI(U)] C CL(V)
» 1p-continuous iff VV € 7p(f(x)) U € 7p(z) fIU]CV
» faintly-continuous iff VV € 7y(f(x)) 3U € 7(z) f[U] C
IR = ® oac
Continuity
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Definition

A function f: X — Y at the point z € X is
» continuous iff VV € 7(f(x)) 3U € 7(z) fIUJCV
» weakly continuous iff VV € 7(f(x)) 3U € 7(z) f[U]
» f-continuous iff YV € 7(f(z)) U € 7(x) f[CLU)]
» 1p-continuous iff YV € 7p(f(x)) U € mp(x) f[U] C
» faintly-continuous iff VV € 7p(f(z)) 3U € 7(x) f|U

c cv)
c CLV)
v
J <
Continuity

0- contlnulty To- cont1nu1ty

weak continuity ——— famt continuity
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Question 1

If f:(X,7x) — (Y, 7y) is continuous, what are sufficient

conditions for f: (X, 7*) — (Y, 0*) to remain continuous?
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Question 1

Question 2

If f:(X,7x)— (Y, 7y) is continuous, what are sufficient
conditions for f: (X, 7*) — (Y, 0*) to remain continuous?

If f:(X,7x) = (Y, 7y) is XXXXXXXX-continuous, what can we

conclude about function if we change topologies by ideals?
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Theorem

Let (X, 7x,Zx) and (Y, 7y, Zy) be ideal topological spaces. If f: (X, 7x) — (Y, 7y)
the following equivalent conditions:
a) VAC X flA*] C (FIA])";

b)VBCY (f7HB))" € fB]

is a continuous function and for all I € Ty we have f~![I] € Tx

. Then there hold
which implies the following three equivalent conditions:
¢) VAC X fICI"(A)] € CI*(f[A]);
d) VB CY CI'((f~'[B])) € fH[CI"(B));
e) f:(X,7%) = (Y, 75) is a continuous function.
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f-continuity
Theorem

YV er(f(xz)) AU € m(x) fICLU)] C CLIV)

Let (X, 7x,Zx) and (Y, 7y,Zy) be ideal topological spaces. If f: (X, 7x) — (Y, 7y)
the following equivalent conditions:

is a O-continuous function and for all I € Zy we have f~![I] € Zx, then there hold
a) VA C X f[[(A)] € T'(f[A]);
b) VB CY T(f~1[B]) € fH[[(B)].

which implies the following two equivalent conditions:

c) VAC X f[Cl,(A)] C Cly(fA]);

d) f:(X,0x) = (Y,0y) is a continuous function.

Continuity
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Theorem

YV er(f(x)) U € 7(x) fICHU)] C CLV)

Let (X, 7x,Zx) and (Y, 7y,Zy) be ideal topological spaces. If f: (X, 7x) — (Y, 7y)
the following equivalent conditions:

is a O-continuous function and for all I € Zy we have f~![I] € Zx, then there hold
a) VA C X f[[(A)] € T'(f[A]);
b) VB CY T(f~1[B]) € fH[[(B)].

which implies the following two equivalent conditions:

c) VAC X f[Cl,(A)] C Cly(fA]);

d) f:(X,0x) = (Y,0y) is a continuous function.
Corollary

1s continuous.
:
Continuity

If f:(X,7x) = (Y, 7y) is a f-continuous function then f: (X, (79)x) — (Y, (79)y)
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Weak continuity
Theorem

YV er(f(x)) U € r(x) f[U] C CYV)

Let (X,7x,Zx) and (Y, 7y, Zy) be ideal topological spaces. If f: (X, 7x) — (Y, 7y)
hold the following equivalent conditions:

is a weakly continuous function and for all I € Zy we have f~1[I] € Zx, then there
a) VA C X flA"] C T(f[A]);

b)VBCY (f7HB])* € fI(B)).
which implies the following condition:

c) f:(X,7%) = (Y,oy) is a continuous function.

Continuity
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Weak continuity

YV er(f(x)) U € r(x) f[U] C CYV)

Theorem

Let (X,7x,Zx) and (Y, 7y, Zy) be ideal topological spaces. If f: (X, 7x) — (Y, 7y)
is a weakly continuous function and for all I € Zy we have f~1[I] € Zx, then there
hold the following equivalent conditions:

a) VA C X fA] € T(f[A]);

b)VBCY (f7H[B])" < fHI(B)].

which implies the following condition:
c) f:(X,7%) = (Y,oy) is a continuous function.

Corollary (Long and Herrington 1982)

If f:(X,7x) = (Y, 7y) is a weakly continuous function then

f (X, 7x) = (Y, (19)y) is continuous, which is equivalent to faint continuity of
(X, mx) = (Y, 1v).
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If f:(X,7x) — (Y, 7y) is weakly continuous and not 7p-continuous, then both X
and Y have infinite topologies.
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Weakly-continuous vs. 7p-continuous

Theorem

If f:(X,7x) — (Y, 7y) is weakly continuous and not 7p-continuous, then both X

and Y have infinite topologies. So, if f: (X, 7x) — (Y, 7y) is weakly continuous
and if X or Y is has finite topology, then f is 7y-continuous.
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Weakly-continuous vs. 7p-continuous

Theorem

If f:(X,7x) — (Y, 7y) is weakly continuous and not 7p-continuous, then both X

and Y have infinite topologies. So, if f: (X, 7x) — (Y, 7y) is weakly continuous
and if X or Y is has finite topology, then f is 7y-continuous.

Example (Weakly-continuous, but not 75-continuous)

Let X ={zp,z1} Uw and Y = {yo,y1} Uw x {0,1}.

Bx(zo) = {{zo} Uw\ K :|K]| < No}
Bx(z1) = {{z1}Uw\K :|K]| < No}
Bx(n) = {n}

A
Continuity

:
Novi Sad
e




Ideals and topology 6-open sets and ideals Continuity References
00

0000 00000e0
I

Weakly-continuous vs. 7p-continuous

Theorem

If f:(X,7x) — (Y, 7y) is weakly continuous and not 7p-continuous, then both X
and Y have infinite topologies. So, if f: (X, 7x) — (Y, 7y) is weakly continuous
and if X or Y is has finite topology, then f is 7y-continuous.

Example (Weakly-continuous, but not 75-continuous)

Let X ={zp,z1} Uw and Y = {yo,y1} Uw x {0,1}.

Bx(zo) = {{zo}Uw\K :|K|<No}
Bx(z1) = {{z1}Uw\ K :|K| <o}
Bx(n) = {n}
By(yo) = {{yo} U{(k,0): k>n}:ncw}
By(y1) = {{y}U((wx {I1HN\K)U{{n,0)}: K] <Ro,n € w},
By ((n,0)) = {(n,0)},
By((n,1)) = {{y}U (0 x {IHNE)U{n,0),(n, 1)} : [K] <Ro,n € w}.
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Weakly-continuous vs. 7p-continuous

Theorem

If f:(X,7x) — (Y, 7y) is weakly continuous and not 7p-continuous, then both X
and Y have infinite topologies. So, if f: (X, 7x) — (Y, 7y) is weakly continuous
and if X or Y is has finite topology, then f is 7y-continuous.

Example (Weakly-continuous, but not 75-continuous)
Let X ={zp,z1} Uw and Y = {yo,y1} Uw x {0,1}.

Bx(zo) = {{zo} Uw\ K :|K]| < No}
Bx(z1) = {{z1}Uw\K :|K]| < No}
Bx(n) = {n}
By (yo) = {{wotU{(k,0):k=n}:necw},
By(y1) = {ymtU((wx{1H\K)U{({n,0)}:[K]<Ro,n € w},
By ((n,0)) = {(n,0)},
By((n,1)) = {m}u((wx{IH\K)U{(n,0),(n,1)}: |K| <Ro,n € w}.

f(zo) = vo, f(z1) = y1, f(n) = (n,1), for n € w.

Continuity Novi Sad
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f-continuity

weak continuity

> faint continuity
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Local closure functions in ideal topological spaces.
Nowvi Sad J. Math. 43, 2 (2013), 139-149.
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